MATH 108 Fall 2019 - Problem Set 5

due November 4

- 1. Let \sim be the relation on \mathbb{R} defined by $x \sim y$ if and only if $x y \in \mathbb{Z}$.
 - (a) Prove that \sim is an equivalence relation.
 - (b) Prove for all real numbers x, y, z, w that if $\overline{x} = \overline{z}$ and $\overline{y} = \overline{w}$ then $\overline{x+y} = \overline{z+w}$.
- 2. Using modular arithmetic, prove that for all postive integers n,
 - (a) $10^n 1$ is divisible by 3.
 - (b) $n^4 + 2n^3 n^2 2n$ is divisible by 4.
 - (c) $1^n + 2^n + 3^n + 4^n$ is a multiple of 5 or one less than a multiple of 5.
- 3. The "Cancellation Law" for $\mathbb{Z}/m\mathbb{Z}$ is the statement: For all $x, y, z \in \mathbb{Z}$, if $xy \equiv xz \pmod{m}$ and $x \not\equiv 0 \pmod{m}$ then $y \equiv z \pmod{m}$.
 - (a) Prove that if m is prime then the Cancellation Law for $\mathbb{Z}/m\mathbb{Z}$ is true.
 - (b) Prove that if m is composite then the Cancellation Law for $\mathbb{Z}/m\mathbb{Z}$ is false.
- 4. Let \leq be the relation on \mathbb{Z}^2 defined by $(a,b) \leq (c,d)$ if and only if $a \leq c$ and $b \leq d$.
 - (a) Prove that \leq is a partial order.
 - (b) Find the greatest lower bound of $\{(1,5),(3,3)\}$.
 - (c) Is \leq a total order? Justify your answer.
- 5. Let A be the set of divisors of 36, $A = \{1, 2, 3, 4, 6, 9, 12, 18, 36\}$. Draw the Hasse diagram for the poset (A, |).